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Abstract

The general rate model provides a reliable platform to predict elution bands in both linear and non-linear chromatography
provided the required equilibrium functions and the coefficients quantifying the mass transfer in and around the particles are
available. If further the variation of the equilibrium functions with changes in the mobile phase composition is known, this
model is also able to predict gradient elution chromatography. Significant disadvantages of the model are the need to specify
three kinetic coefficients and the amount of computing time required for the numerical solution of the underlying equations.
Thus, several simplified models have been suggested lumping mass transfer resistances together. In this work the accuracy of
predicting chromatographic bands based on the numerical solution of two lumped models has been analyzed. Elution profiles
calculated by (a) the transport-dispersive and (b) the equilibrium-dispersive models were compared between each other and
with the solution of the more detailed general rate model. In the analysis performed both linear and non-linear
chromatography was considered under isocratic and gradient conditions.
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1 . Introduction balance equations for axial dispersion and mass
transport resistances in and around the particles.

The application of various mathematical models Thus, three kinetic parameters need to be specified.
for the simulation of chromatography and adsorption The solution of the equations of the general rate
processes has been discussed in several excellent model further requires the application of advanced
monographs[1–3] and a review[4]. For accurate numerical techniques (as, for example, orthogonal
predictions the so-called general rate model has been collocation[5,6]) and significant computation times.
suggested and was frequently applied successfully For these reasons a number of models simplifying
[3]. This model accounts in the differential mass the transport processes have been proposed[7,8].

One of the most successful simplified models ca-
pable of describing the essential features of prepara-*Corresponding author. Tel.:148-17-8651730; fax:148-17-
tive chromatography is the so-called lumped equilib-8543655.
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tions to band broadening are quantified using an with the lumped transport-dispersive models. As a
apparent axial dispersion coefficient[3]. This coeffi- reference the solution of the general rate model was
cient can be estimated from the shape of measured used. The analysis has been performed for isocratic
analytical peaks. Alternatively, in order to quantify and gradient chromatography. Due to the introduced
chromatographic processes with slow mass transfer changes of the mobile phase composition during
kinetics the so-called lumped transport-dispersive gradient elution a more pronounced effect of con-
model has also been frequently used[9,10]. This centration on the values of the equivalent lumped
model uses the intrinsic axial dispersion coefficient axial dispersion and mass transport coefficients was
and lumps all the remaining mass transport resis- expected than for isocratic elution.
tances into an overall mass transport coefficient. The
latter coefficient has often been determined by fitting
simulated band profiles to experimental results. The 2 . Theory
solution of the two lumped models is relatively
simple and does not require sophisticated numerical To describe the models developed to simulate
methods. Various finite difference methods can be chromatographic separation processes it is conveni-
utilized. To simulate elution profiles under isocratic ent to introduce dimensionless parameters. Following
conditions in particular the forward-backward algo- widely applied conventions[17], the following di-
rithm [11] is a good tool to solve the underlying mensionless variables will be used:
model equations. To analyze gradient elution bac-

x r tu ckward-forward schemes and the Craig algorithm ] ] ] ]z 5 ; R5 ; t 5 ; C 5 ;L R L´ rp e rhave been applied[12].
c r q uLIn linear chromatography and for isocratic elution p s
] ] ]]C 5 ; Q 5 ; Pe 5 ;pthe contributions to band broadening of different r r D ´r r L e

mass transfer kinetics and axial dispersion are addi- k a L´ k R 12´ext p e ext p e (1)
]]] ]] ]]St 5 ; Bi 5 ; F 5 ;tive and can be lumped into apparent axial dispersion eu D ´eff eor mass transport coefficients. The general rate and
12´ 12´p tthe equilibrium- or transport-dispersive models with ]] ]]F 5 ; F 5p t´ ´p tlumped coefficients can generate equivalent solutions

with ´ 5´ 1 12´ ´s dprovided the applied coefficients are properly ad- t e e p

justed [13,14]. If non-linear conditions are consid-
All symbols used in Eq. (1) are explained in theered, an agreement with the general rate model can

Nomenclature below. The essential parameters quan-be achieved only if concentration dependent co-
tifying convection, axial dispersion, external andefficients are applied in the lumped models. The
internal mass transfer resistances areu, D , k andL extconcrete dependencies required to achieve a good
D . Each of the dimensionless numbersPe, St andeffagreement are usually difficult to specify and have to
Bi contains two of these rate determining parameters.take into account the specific courses of the ad-

sorption isotherms. However, the application of
complex functions for the apparent transport co- 2 .1. Mathematical models
efficients destroys the convenience of the simplified
lumped models. Thus, it appears to be instructive to Below three models capable to quantify chromato-
study the loss of accuracy connected with the usage graphic processes will be presented. At first the most
of constant coefficients in these lumped models. In a detailed general models will be introduced. Then two
preliminary work it has already been observed that simple models using lumped mass transfer coeffi-
the application of constant values leads to inac- cients will be explained. More details concerning
curacies especially for low column efficiencies and these models can be found elsewhere[3,9,16].
strongly non-linear adsorption isotherms[15,16]. The general rate model consists of two partial

In this work the elution of single components was differential mass balance equations for the changes
predicted with the lumped equilibrium-dispersive and of the concentrations in the mobile phase and of the
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loading in the stationary phase. With the defined which was found to be valid for normal-phase
dimensionless variables this model can be expressed systems[18,19]:
as:

2mHH 5 p C (6)s dH mod(i) the differential mass balance equation for the
mobile phase:

The same type of functional dependence was also
2d≠C ≠C 1 ≠ Cp assumed forK , i.e.:r] ] ] ] ]]1 5 ? ? 2F St C 2C R51 (2)u ds2 e p≠t ≠z Pe L ≠z

2mKrK 5 p C (7)s dr Kr mod(ii) the differential mass balance equation for the
stationary and the stagnant liquid phase Thus, the quantitative description of the equilib-

≠C rium loadings requires for gradients the specification≠Q* St 1 ≠p
]] ]] ] ] ]´ ? 1 12´ ? 5 ? ?s dp p 2 of the four parameters:p , m , p , and m .≠t ≠t 3Bi ≠R H H Kr KrR

The local concentrationC can be calculated bymod≠Cp2 solving Eqs. (2) and (3) for the modifier coupledS D]]? R ? (3)
≠R with its adsorption isotherm equation. If the con-

centration of the modifier is much higher than thewhich, for an established adsorption equilibrium
sample concentration, approximately a single com-within the stationary phase can be rewritten in the
ponent adsorption isotherm model as given with Eq.form:
(4) can be used[20,21].

≠C ≠CSt 1 ≠p p2 The following initial and boundary conditionsS D]] ]] ] ] ]]11 k ? 5 ? ? ? R ? (3a)s dp 2≠t ´ 3Bi ≠R ≠RRp complete the general rate model:
(i) initial conditions:with

0dQ* C t 5 0, z 5 C 0# z #1 (8)s d
]]k 5F ? (3b)p p dCp

0 0C t 50,R, z 5C ; Q*(t 5 0, R, z)5Q* sC ds dpEqs. (2) and (3) are complemented by an equilib-
0#R# 1, 0# z # 1 (9)rium relationship coupling in Eq. (3b) the stationary

and stagnant liquid phase concentrations. In this 0 0 0where:C 5 0 for the component andC 5C formodwork the adsorption equilibrium was described by
the modifier.the single component Langmuir equation:

(ii) boundary conditions for Eq. (2) andt.0:
HC rp s
]]] ]Q* 5 ? (4) 1 ≠C(t, z 5 0)11K C r ] ]]]]99C t, z 5 0 2C t, z 5 0 5 ? (10)r p r s d s dF Pe ≠z

`where for H holds: H 5 q K , with the loadingr For the components a rectangular pulse injection is`capacityq and the equilibrium constantK .r assumed, i.e.:
If in gradient elution the mobile phase composi-

C for t [ 0,tf gtion is varied during the process due to changes of a F p
99C t, z 5 0 5 (10a)s d HFmodifier concentrationC the local equilibrium 0 for t .tmod p

can be expressed as:
For the modifier a linear concentration gradient is

H C Cs d rmod p assumed starting after the injection is finished:s
]]]]] ]Q* 5 ? (5)11K C C rs dr mod p r 9C t, z 50 5s dFmod

where the functional dependencies of the two iso- C for t [ 0,tf gFmod p
therm parameters onC have to be determinedmod C 1b t 2t for t .t .ts d (10b)Fmod p e pusually experimentally. In this work a dependence of 5C 1b t 2t for t .ts dFmod e p eH on the modifier concentration was suggested,
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whereb is the gradient steepness andt designatese dQ* Cs d
]]]the end of the gradient. k 5F ? (14b)0 t dC

≠C
] 50 (11)U All contributions to band broadening are lumped≠z z51

into an apparent dispersion coefficient and then into
(iii) boundary conditions for Eq. (3) andt.0: the apparent Peclet numberPe 5 uL /D ´ . Thus,a a e

internal and external mass transport kinetics are≠C (t, z, R)p
accounted for indirectly and coupled with axial]]]] 5Bi C 2C t, z, R51U s ds dp≠R R51 dispersion. Consequently, for the apparent Peclet

0, z ,1 (12) number should hold:Pe #Pe. Usually Pe is de-a a

termined from the variance of a peak registered
≠C t, z, Rs dp under linear conditions. Typically, the same value is]]] 50 0# z # 1 (13)U

≠R R50 then used to also describe the chromatograms under
overloaded conditions[3].As mentioned above, the essential dimensionless

The transport-dispersive model is based on a massparameters of the model quantifying band broaden-
balance equation similar to Eq. (14). The differenceing effects arePe, St and Bi. There are several
is based on the fact that the loading of the solidmethods available to estimate the order of magnitude
phase is not assumed to be in equilibrium with theof these parameters[17]. To predict Stanton and
liquid phase concentration and the dispersion term isPeclet numbers, correlations recommended or used
expressed, as in the general rate model, consideringby Wilson and Geankoplis[22], Chung and Wen
just axial dispersion:[23], Morbidelli et al. [7,8] and Storti et al.[24]

appear to be most useful. 2´ ´≠C ≠Q ≠C 1 ≠ Ce eThe numerical solution of the general rate model ] ] ] ] ] ] ]]1F ? 1 ? 5 ? ? (15)t 2≠t ≠t ´ ≠z ´ Pe ≠zt trequires reliable methods and algorithms. To solve
this type of equations the orthogonal collocation

To quantify the accumulation in the solid phase themethod is very suitable[5]. However, the necessity
following simple linear driving force approach isof simultaneously calculating concentration profiles
used[1,3,25,26]:in the column and within the particles leads to

relatively long computation times. Thus, as an ≠Q
]5 St Q* 2Q (16)s dalternative approach the lumping together of several m≠t

effects and the simplification of the general rate
model has been suggested. The most frequently usedwhere
models of this type are the equilibrium-dispersive

k L´and the transport-dispersive models which will be m e
]]St 5m udescribed below.

The equilibrium-dispersive model consist of a
The contributions of the external (k ) and theextsingle differential mass balance equation for each
internal mass transport rate (k ) are lumped into theintcomponent:
coefficientk . The coefficientk can be related tom int

2´ ´≠C ≠Q* C ≠C 1 ≠ Cs d the effective diffusion coefficientD [24]:e e eff] ]]] ] ] ] ] ]]1F ? 1 ? 5 ? ? (14)t 2≠t ≠t ´ ≠z ´ Pe ≠zt t a
5Deff
]]k 5 (17)intIf a permanent equilibrium between the two phases is Rp

assumed holds:
2 In most applications of the model, the lumped´ ´≠C ≠C 1 ≠ Ce e

] ] ] ] ] ]]11 k ? 1 ? 5 ? ? (14a) parametersk or St are assumed to be constant ands d0 2 m m≠t ´ ≠z ´ Pe ≠zt tr a typically estimated by fitting simulated and measured
with peaks recorded under linear conditions.
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2 .2. Plate number equations phenomena in chromatographic columns[2,14,27–
29]; in the corresponding plate number and plate

2 .2.1. Moment analysis and plate numbers height equations all non-equilibrium effects are
In order to compare the different models used in additive. For the first absolute and second central

this work it is instructive to analyze the corre- moments corresponding to the general rate model
sponding numbers of theoretical plates. Based on holds:
classical residence time analysis plate numbers can

Lbe determined from the first absolute moment,m ,1 ]]m 5 ? 11 k (22)s d1 1u /´s d9and the second central moment,m (which corre- e2
2sponds to the variances ) of a calculated band 2L2profile. These moments are defined as follows: ]]9s 5m 5 ? d 1d 1d (23)s d2 ax ext inu /´s de

`

where:d ,d ,d are contributions of axial disper-ax ext inE tC(t)dt
sion, external and internal mass transport resistances

0
]]]m 5 (18)`1 to band broadening. For these contributions holds:

E C(t)dt DL 2]]d 5 ? 11 ks dax 10 2u /´s de
`

1 L
22 ] ]]5 ? ? 11 k (24)s dE (t 2m ) C(t)dt 11 Pe u /´s de

02 ]]]]]9m 5s 5 (19)`2 d 1 Lp 2 2]] ]] ]]d 5 ? k 5 ? ? k (25)ext 1 1E C(t)dt 6k F StF u /´s dext e e e

0
2d Bi Leff p 2The corresponding number of theoretical plates,N , ]]] ]] ]]d 5 ? k 5 ? (26)in 160D F 5StF u /´s deff e e eis:

2 The constantk is expressed as:1m1eff ]N 5 (20)2 rss ]k 5F ? ´ 1 12´ H ?s dS D1 e p p rrThus a column of lengthL has the following height
rsequivalent to a theoretical plate,HETP: ]5F ´ ? 11F H ? (27)S De p p rr2Lseff ]]HETP 5 L /N 5 (21)2 whereH ? r /r is the isotherm slope, i.e.:s rm1

r dQ*sTo achieve a close agreement between predictions ] ]]H ? 5 (27a)
r dCof band profiles using different models it is necessary r

that at least the corresponding theoretical moments Substituting Eqs. (22–26) into Eq. (20) the fol-
defined in Eqs. (18) and (19) and thus the plate lowing equation can be derived to specify the plateeffnumbersN are identical (or very close to each number of the general rate model,N :grmother). Perfect agreement can be expected of course

2only if the higher moments, not considered here, are k1 2 Bi 11
]] ] ]] ]] ]]5 12 ? ? 1S D F Galso identical. N Pe 11 k 5F St F Stgrm 1 e e

2k2 12 .2.2. Plate number equations: isocratic mode 1
] ]] ]]5 12 ? ? (28)S DPe 11 k F St1 e ov2 .2.2.1. General rate model

(i) Linear isotherms. For linear conditions there In the above for the overall Stanton numberStov

exist well know treatments quantifying dispersion holds:
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before and after the concentration jump andk is1k a L´St ov p e
]]] ]]]St 5 5 (29) related to the corresponding retention time of theov 11Bi /5 u

front. Thus, as in linear chromatography, the vari-
ance of a certain shock front can be described with aTypically, in chromatographic processes the con-
single constant plate number. Although self-sharpen-tribution of external mass transfer resistances is
ing fronts begin to form frequently in preparativesmall [30]. Then the term (1/F St) can be neglectede
chromatography, the column lengths applied are notin Eq. (28) simplifying Eq. (29):
always sufficiently large to allow for the complete

5St formation of the constant pattern behavior.]St 5 (29a)ov Bi In contrast to self-sharpening fronts, dispersed
fronts also occur due to isotherm non-linearities.Then the ratioSt /Bi can be treated as an adjust-
These dispersed fronts are characterized by a thermo-able parameter that can be determined by matching
dynamically determined retention time distribution.experimental and simulated peaks under linear con-
The corresponding concentration dependentk val-1ditions. Since the determining ofF is usuallye ues must be related to the local isotherm slope. Theydifficult this parameter can be further lumped to-
vary with the local concentration according to:gether with the ratioSt /Bi and F St /Bi can bee

dQ*determined from experiments.
]]S Dk C 5F ? ´ 1 (12´ ) ? (32)s d1 e p p dCFor the overall mass transport coefficientk inov

Eq. (29) holds: with
211 1 rdQ* H s] ]k 5 1 (30) ]] ]]] ]5 ? (32a)S Dov 2k k dC rext int 11K C rs dr

(ii) Non-linear isotherms. The analysis of vari- These concentration dependentk values instead of1
ances or plate numbers characterizing a chromato- Eq. (27) are capable of describing the variances of
graphic peak or a breakthrough curve becomes moreresponses curves belonging to small pulses injected
complex if the adsorption isotherms are non-linear. on certain concentration levels.
Now these quantities do not depend only on the Overloaded peaks under non-linear conditions are
Henry constant and the mass transfer parameters buttypically characterized by the presence of com-
also on the concentration range covered. As shown pressed and dispersed fronts. A general prediction of
by Rhee and Amundson[31] there is a simplified the variance of such elution profiles also considering
analysis possible for self-sharpening fronts that are mass transfer resistances is only possible by numeri-
characterized by very rapid concentration changes. cally solving the equation of a column model. To
Such fronts establish in case of favorable isotherms find conditions under which the results of different
and for sufficient column lengths. Under these column models converge as closely as possible
conditions the contributions of axial dispersion and requires tedious numerical calculations. Below in-
external and internal mass transport resistances arestead the use of just Eqs. (31) and (32) will be
additive even under non-linear conditions. To esti- attempted, to match as closely as possible the
mate the variance of such shock layers the equationspredictions of the three models considered in this
presented above can be used, providedk in Eq. (27) paper. For this it remains to specify the plate height1

is calculated differently based on the isotherm chord equations for the equilibrium-dispersive and the
[32], i.e.: transport dispersive models.

Q*(C u )2Q*(C u )s 1 s 2
]]]]]] 2 .2.2.2. Equilibrium-dispersive modelk 5F ? ´ 1 12´ ?S s d D1 e p p C u 2C us ds 1 s 2 In the equilibrium-dispersive model all contribu-

(31) tions to band broadening are lumped into the appar-
ent Peclet number,Pe . For linear condition the platea

effnumber of the equilibrium-dispersive model,N ,Above theC u , C u designate the concentrations edms 2 s 1
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can be simply calculated from this quantity accord- After rearrangingSt can be expressed as:m

ing to:
2k ´ F St10 e e ov

]]] ] ]]]St 5 ? 1 1 ? (38)S D2 m 2 k ´´1 s 2 11 k 1 ts de 0]] ] ] ]5 5 ? (33)eff 2 ´ PeN m t aedm 1 As for the k above [Eqs. (31) and (32)] for shock1

layers formed under non-linear conditions can beObviously to match the solutions of the equilib-
assumed:rium-dispersive and the general rate models should

effhold N 5N , i.e.grm edm Q*(C u )2Q*(C u )s 1 s 2
]]]]]]k 5F ? (39)0 t

2 C u 2C us ds 1 s 2k1 1 11
] ] ]] ]]5 1 ? (34)S DPe Pe 11 k F Sta 1 e ov Analogously to calculatek for dispersed fronts the0

local slope of the isotherm can be applied:Thus, in order to use successfully the simpler
equilibrium-dispersive model, equivalent apparent rH s

]]] ]k 5F ? ? (40)0 tPeclet numbers have to be applied. To determine 2 r11K C rs drsuch numbers the values forPe, k , F andSt have1 e ov

to be provided. The second moments corresponding to the trans-
If concentration dependentk values are used [Eq. port-dispersive model become equivalent to that1

(32)], the apparent Peclet number will also be corresponding to the general rate model if the
concentration dependent, i.e.Pe 5Pe (C). For typi- lumped Stanton number,St , fulfills Eq. (37). Toa a m

cal chromatographic conditions usually the term realize this matching the required parameters:k , k ,0 1

1 /Pe in Eq. (34) is small compared to the contribu- ´ , ´ , F and St have to be provided. If con-e t e ov

tions of the two mass transport resistances quantified centration dependentk and k values are used also0 1

by St . the lumped Stanton number will be concentrationov

dependent, i.e.St 5St (C).m m

2 .2.2.3. Transport-dispersive model
2 .2.3. Plate number equations: gradient elutionBased on an analytical solution of the transport-

In order to simulate elution processes underdispersive model for linear isotherms, Lapidus and
solvent gradient conditions an additional differentialAmundson[13] quantified band broadening effects.
mass balance equation for the modifier has to beThe corresponding plate height equation of this
solved. The isotherm parameters of a certain solutemodel can be written in the following dimensionless
are not constant but depend on the local modifierform [15,16]:
concentration. This leads to the fact that for gradient

2k ´1 2 0 e elution the two coefficientsk and k [(Eqs. (31),0 1]] ] ]] ]]5 12 ? ? (35)S Deff Pe 11 k ´ k StN 0 t 0 m (32), (39), (40)] also vary with changes of thetdm

mobile phase composition. Thus, the concentration
where k is the retention factor, which for linear0 dependencies of the apparentPe number and theaconditions is expressed as: lumped St number are more complex than form

r isocratic conditions. Again a simplified situation iss
]k 5F H ? (36)0 t encountered if the isotherms of the solutes remainrr

linear for all solvent compositions.effMatching N and N [i.e. Eqs. (28) and (35)],grm tdm

one obtains: 2 .2.3.1. Linear isotherm
2k For linear conditions the local values of the1

]]S D coefficientsk ; k can be simply expressed as:11 k ´1 0 11 t
] ]]] ]]]5 k ? ? (37)0 2 rSt k ´ F St sm 0 e e ov

]]] k 5F ? H C ? (41)s dS D S D0 t mod r11 k r0
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r H Cs ds mod
] ]]]]]k 5F ? ´ 1 12´ H C ? (42) k 5F ? ´ 1 (12´ ) ? (46)s ds dF G1 e p p mod 1 eH p p J2r 11K C Cr f s d gr mod

where againH C ? r /r is the initial isotherms d In order to determine these values the localmod s r

slope, i.e. H C ? r /r 5 (dQ* /dC)u for thes d modifier concentration profileC (t, z) has to bemod s r C→0 mod
concentration of the modifier atC . The local values known.m

of H can be calculated from the local modifier From the above it is evident that under gradient
concentration, provided the mutual dependence is conditions a close matching between the results of
known. the general rate model and the results of the two

lumped models is more difficult. To reach this goal it
is obviously required to include in the lumped2 .2.3.2. Non-linear isotherm
coefficients in addition to the local concentration ofIf the isotherms are non-linear the situation is very
the solutes also the local mobile phase composition.complex. The simplest case is again the description

of the migration of shock layers, which can be also
formed under gradient conditions. For such fronts the
values ofk and k depend in the following manner 3 . Numerical methods0 1

on the local modifier concentrations:
The three models introduced above were used forQ*(C u , C u )2Q*(C u , C u )s 1 mod 1 s 2 mod 2 simulating band profiles for different isocratic and]]]]]]]]]]]k 5F ?S D0 t C u 2C us ds 1 s 2 gradient conditions. Systems of ordinal differential

(43) equations were obtained after discretizing the partial
differential equations using the orthogonal colloca-

(12´ )p tion on finite elements method[5]. These ordinary]]]k 5F ´ 11S1 e p ´ differential equations were integrated using thep

VODE procedure[33] for relative and absolute errorQ*(C u , C u )2Q*(C u , C u )s 1 mod 1 s 2 mod 2 26
]]]]]]]]]]] of 10 . This procedure automatically chooses the? (44)DC u 2C us ds 1 s 2 appropriate time increment to fulfill the specified

error conditions. In each calculation the number ofwhere C u , C u , C u , C u are related to thes 2 s 1 mod 2 mod 1 internal collocation points[5] was equal to 3 for theconcentrations of the plateaus before and after the
column and equal to 4 for the particles (for solvingconcentrations jump. This analysis is valid provided
the equations of the general rate model). The numberthat competition between sample and modifier can be
of subdomains chosen guaranteed that no visibleneglected. This is often the case in gradient chroma-
oscillation in band profile calculations occurred.tography, wherein concentration of the modifier in

In order to simulate the gradient process thethe mobile phase is markedly higher than that of the
adequate differential mass balance equations [Eqs.sample, hence adsorption of the sample does not
(2) and (3) for the general rate model, Eq. (14) forperturb adsorption equilibrium of the modifier.
the equilibrium-dispersive model and Eqs. (15) andOtherwise competitive isotherm equations must be
(16) for the transport-dispersive model] were solvedapplied. The general difference from the isocratic
together for the sample component and the modifier.situation [Eqs. (31) and (39)] is the fact that the
A detailed description of the procedure applied canspeed of the fronts is influenced by the modifier
be found elsewhere[20].concentration.

For simulating dispersed fronts concentration de-
pendent parametersk and k can be estimated by0 1

4 . Results and discussionagain replacing the isotherm chord by the local
isotherm slope, i.e.:

4 .1. Model parameters
H Cs dmod

]]]]]k 5F ? (45)0 t H J211K C Cf s d g The model parameters used in the simulation studyr mod
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T able 1
Model parameters used in the simulation study

eff
´ ´ r H K c Pe N ´ /´ St /Bie p s r F e t

3 3(kg/m ) (2) (m /kmol)

0.33 0.52 1960 8 4 0.1–0.6 1000 275 or 44 100 or 5

are summarized inTable 1. The value for the (2) Eqs. (31) and (39) [or Eqs. (43) and (44) for
reference density was assumed to ber 51. In this gradients], applicable for shock frontsr

case the dimensionless concentrations in the mobile (3) Eqs. (32) and (40) [or Eqs. (45) and (46) for
and stagnant liquid phases,C and C , correspond gradients], applicable for dispersed frontsp

exactly toc andc . As indicated by the product ofK In extensive preliminary calculations, not illus-p r

and the maximal feed concentrationsc (4*0.652.4) trated below, it was confirmed that for linear con-F

the process was investigated up to strongly non- ditions (i.e. forK 50) the lumped models are indeedr

linear conditions. The simulations using the general equivalent to the general rate model provided the
rate model were performed withPe51000. By appliedPe and St numbers are in agreement witha m

varying the ratioSt /Bi in two steps a relatively low Eqs. (27) and (36) [or (41) and (42) for gradients].
and a relatively high column efficiency could by
analyzed. For different conditions, as a reference 4 .2. Isocratic mode
solutions of the general rate model were calculated.
The lumped equilibrium-dispersive and the transport- To cover typical non-linear situations a series of
dispersive models were solved with apparentPe injections of identical sample volumes with differenta

[Eq. (34)] andSt [Eq. (37)] numbers as described feed concentrations (reaching the non-linear range ofm

above. In order to take into account concentration the isotherm) was simulated using the general rate
effects, the required values fork and k could be model.Fig. 1 illustrates for a relatively high column1 0

calculated in different ways. The following three efficiency (Pe 51000, St /Bi 5 100) the well known
options were considered: effects of formation of sharp and dispersed fronts
(1) Eqs. (27) and (36) [or Eqs. (41) and (42) for and the erosion of the concentration plateau corre-

gradients], valid for linear conditions sponding to the feed concentration if small con-
centrations are injected. In profile 1 the shock layer

 and the dispersed front are still separated by a
plateau corresponding toc 50.6. For decreased feedF

concentrations the plateau disappears and the sharp
and dispersed fronts merge (profiles 2 and 3). If the
concentrations are sufficiently low the sharp fronts
also disperse (profile 4). The dashed profile inFig. 1
illustrates the effect of changing the injection volume
for maintained sample amount compared to profile 4.
Further reference profiles were calculated but for a
relatively low efficiency (St /Bi55).

Before analyzing the results obtained with the two
lumped models it is instructive to evaluate the
concentration effects on the correspondingk , k ,1 0

Fig. 1. Reference profiles calculated by general rate model with and Pe , St values for the range studied (i.e fora m
min maxSt /Bi5100, Pe51000. Curve 1,c 50.6, t 5 4.5 [2] (the in-F p C 50 and C 50.6). The concentration depen-

jection volume is 225% of the column dead volume); curve 2, the dence of the apparentPe number [Eq. (34)] appliedasame as curve 1 butc 50.2; curve 3, the same as curve 1 butF in the equilibrium-dispersive model is related toc 50.1; curve 4, the same as curve 1 butc 50.02; dashed line,F F 2[(k 11) /k ] . For the reference parameters used herethe same as curve 1 butt 5 0.15 [2] and injection volume is 1 1p min
7.5% of the column dead volume. and applying Eq. (32), this term is 1.12 forC and
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max min eff2 for C [Eq. (32)]. For the chord connectingC sponding toSt 519.6 andPe 5550 (orN ´ /´ 5m a e t
maxand C results an intermediate value of 1.4 is 275). It is evident that the accuracy of predictions

found [Eq. (31)]. The concentration dependence of with both lumped models using constantPe andSta m

the St number is according to Eq. (37) related to numbers is relatively good compared to the solutionm
2 2the termk ((11k ) /(11k )) . Applying again Eqs. of the general rate model. Eqs. (27) and (36), i.e. the0 1 0

min(32) and (40) yields for this term 0.12 (forC 50) constant initial isotherm slope, were also used to
maxand 0.48 (forC ). For the corresponding chord simulate with the two lumped models the rather

[Eqs. (31) and (39)] a value of 0.30 is obtained. diluted elution profile corresponding to the dashed
MaxObviously, there is a stronger concentration effect on line inFig. 1 (c K 50.4,1). The results shown inr

the lumpedSt number than on the apparentPe Fig. 3 reveal a similar agreement between the threem a

number. models as for the breakthrough curves shown inFig.
In the following the accuracy of predicting the 2.

calculated reference profiles with the two lumped These and further results indicate that for the
models will be analyzed for two different levels of description of band profiles for relatively high col-
column efficiency. umn efficiencies (theoretical plate numbers larger

effthan N ´ /´ .200) constant lumped coefficientse t

4 .2.1. Relatively high column efficiency taken from the initial isotherm slope might be
At first simulations were carried out forPe51000 successfully applied.

andSt /Bi5100, i.e. for a relatively efficient column.
Breakthrough curves corresponding to profile 1 in 4 .2.2. Relatively low column efficiency
Fig. 1 were calculated with the two lumped models For lower column efficiencies (Pe51000 and

effusing the three possible options available to estimate St /Bi55 corresponding toN ´ /´ 544) and non-t e

the k and k values. For both lumped models these linear conditions the differences of the predictions of1 0

options gave similar results. InFig. 2 are depicted the three models were found to be more significant
(together with the breakthrough curve which was than for higher efficiencies.
calculated with the general rate model) the results of At first the breakthrough curve fromFig. 1 (profile
the two lumped models using Eqs. (27) and (36) 1) was recalculated for the lower efficiency with all
based on the steepest (initial) slope and corre- models. In the calculation with the two lumped

modelsk and k were determined (a) using again1 0

Eqs. (27) and (36) (exploiting only the initial
 

 

Fig. 2. Comparing predictions of a breakthrough curve for a
relatively high efficiency (St /Bi 5 100, Pe 5 1000). Parameters
correspond to curve 1 inFig. 1; solid line, general rate model; Fig. 3. Comparing predictions of elution profiles for a relatively

effcrosses, equilibrium-dispersive model,N ´ /´ 5275, k Eq. high efficiency (St /Bi 5100, Pe 5 1000). Parameters corresponde t 1

(27); dashed line, transport-dispersive model,St 519.6,k andk to the dashed line inFig. 1. Lines and symbols correspond toFig.m 1 0

from Eqs. (27) and (36). 2. k and k from Eqs. (27) and (36).1 0
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 isotherm slope), (b) using Eqs. (31) and (39) (ex-
ploiting the isotherm chord) for simulating the
sharpened front and (c) using Eqs. (32) and (40)
(exploiting the concentration dependent local slopes)
for simulating the dispersed front. The accuracy of
simulations using the equilibrium-dispersive model
was already acceptable with a constantPe numbera

according to Eqs. (27) and (36), i.e. influence of the
isotherm non-linearity on the prediction quality was
negligible. The most pronounced inaccuracies were
exhibited by simulations of the transport-dispersive
model with a constantSt number [Eqs. (27) andm

(36)]. The accuracy of predicting with this model the
sharpened and the dispersed front was significantly Fig. 4. Influence of a model type on the accuracy of the band

broadening prediction for a relatively low efficiency. Modelimproved when the non-linearity of the isotherm was
parameters as inTable 1and for curve 1 inFig. 1.Solid line, bandaccounted for by the corresponding Eqs. (31) and
profiles calculated with the general rate model; dashed line,

(39) or (32) and (40). transport-dispersive model,St 52.2 [k , k from Eqs. (27) andm 1 0
effFig. 5 shows the concentration dependence of the (36)]; crosses, equilibrium-dispersive model,N ´ /´ 544 [ke t 1

two lumped parametersPe and St corresponding from Eq. (27)]; dotted line, transport-dispersive model with thea m
non-linear correction [k , k from Eqs. (31) and (39) for theto the dispersed fronts given inFig. 4 and calculated 1 0

sharpened front and from Eqs. (32) and (40) for the dispersedwith Eqs. (32) and (40). Obviously the change in the
front].

size of the parameters is much more pronounced for
the parameter of the transport-dispersive model,St .m

Averaging this latter value appears to be critical and (compare curves 2–4 inFig. 1). As could be
had already been found to cause inaccurate results in expected, the application of Eqs. (31) and (39) in
the description of breakthrough curves of bovine combination with the feed concentration delivered
serum albumin (BSA) in anion-exchange chromatog- such constantk and k that led to profiles sig-1 0

raphy [16]. nificantly too sharp. Thus, inFigs, 6 and 7are shown
Subsequently chromatographic band profiles were only the results for the cases wherek and k were1 0

calculated for an injected amount not sufficient to calculated using (a) Eqs. (27) and (36) (constant
reach at the column outlet the injection concentration isotherm slope) and (b) Eqs. (32) and (40) (local

isotherm slope). The same trend as inFig. 4 was
  

Fig. 5. Concentration dependence ofSt and Pe numbers in Fig. 6. Influence of a model type on the accuracy of the bandm a

simulations of dispersed fronts in isocratic mode corresponding to broadening prediction for a relatively low efficiency. Lines as in
the dispersed front inFig. 4 according to Eqs. (32) and (40). Fig. 4, model parameters as inTable 1and for curve 2 inFig. 1.
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Fig. 8. Influence of gradient steepness on the chromatographic
profiles (calculations with the general rate model). Gradient

Fig. 7. Influence of a model type on the accuracy of the band steepness: the change ofC 50.1 to C 50.6 in t 5 12 [2]Fmod Fmod p
broadening prediction for a relatively low efficiency. Model (gradient A) andC 50.1 toC 51.6 in t 5 6 [2] (gradientFmod Fmod p
parameters as inTable 1and for dashed line inFig. 1. Solid line, B). The parameters of Eqs. (6) and (7) are:m 51, m 51,H Kr
band profiles calculated with the general rate model; 1, transport- p 50.5, p 52.H Kr
dispersive model,St 52.2 [k , k from Eqs. (27) and (36)]; 2,m 1 0

effequilibrium-dispersive model,N ´ /´ 544 [k from Eq. (27)]; 3,e t 1

transport-dispersive model with the non-linear correction [k , k1 0 sion and mass transport coefficients also now depend
from Eqs. (31) and (39) for the sharpened front and from Eqs.

on the mobile phase composition. In gradient elution(32) and (40) for the dispersed front].
modifier concentration changes are usually imposed
in order to create severe changes in the isotherm

observed, i.e. the simulations with the transport- slopes or chords. This leads to pronounced changes
dispersive model were the most inaccurate (Fig. 7). in the values of the appropriate lumped transport
The differences between simulations of all models coefficients. Thus, the lumped coefficient determined
vanish the more the peaks are diluted (fromFig. 6 to for initial (the start of gradient) and final (the end of
Fig. 7). gradient) concentration levels can be markedly dif-

ferent. This ‘‘modifier’’ or ‘‘retention’’ dependence
4 .3. Gradient elution can be much more pronounced compared to the

concentration dependence connected with the iso-
Similar calculations as described above were therm non-linearity discussed above. In systematic

performed for the gradient elution. Linear gradients calculations for the parameter used in this study the
in accordance with Eq. (10a) were considered. For values of the lumped Stanton number were found to
the sake of simplicity the modifier was assumed to be more sensitive to the mobile phase composition
be not retained, which is typical if the column is than those of the apparent Peclet number. Typical
initially equilibrated by the modifier, i.e.H ( 0, St and Pe numbers calculated for the initial andmod m a

K (0 were used for the simulations. The well- final modifier concentration for two gradient steep-rmod

known effect of gradient steepness on the chromato- nesses are summarized inTable 2.
graphic band profiles is illustrated inFig. 8. The The simulations of chromatographic profiles were
gradient profiles of the modifier for two different performed for both lumped models at:
gradient steepnesses are superimposed to the band (1) constant initial and finalSt andPe numbersm a

profiles of the sample component. The process related to the slope of the linear isotherm at initial or
parameters are summarized inTable 2. final saturation level, respectively. For calculating

In the simulations of gradient elution only chro- initial and finalH values the functional dependency
matographic peaks not reaching at the column outlet H(C ) given by Eq. (6) was used.mod

the feed concentration were considered. As discussed (2) local non-constant values ofSt and Pem a

above under gradient conditions the lumped disper- numbers corresponding to the local isotherm slope



D. Antos et al. / J. Chromatogr. A 1006 (2003) 61–76 73

T able 2
Model parameters used in the gradient elution simulation study

a b a bGradient steepness St St Pe Pe ´ /´ N Modifier isothermm m a a t e

Gradient A C change 1.0 4.7 82 101 50.5 H50, K 50mod rmod
30.1–0.6 (kmol /m )

in 400 s

Gradient B C change 1.0 5.95 82 129 64 H50, K 50mod rmod
30.1–1.6 (kmol /m )

in 200 s
a Calculated at the constant isotherm slope related to the initial (C 50.1) saturation level.mod
b Calculated at the constant isotherm slope related to the final (C 50.6 or 1.6, gradients A or B) saturation level.mod

 according to Eqs. (45) and (46). The appropriate
actual isotherm parametersH(C ) and K (C )mod r mod

were determined from the relationship given by Eqs.
(6) and (7).

4 .3.1. Transport-dispersive model
In Figs. 9 and 10results of simulations for the

transport-dispersive model for two different gradient
steepnesses (gradients A and B inTable 2) are
shown.

It is apparent that assumption of constant mass
transport coefficients leads to significant errors,
which become more pronounced for strong gradient

Fig. 9. Comparison between simulations with the general rate and steepnesses. TheSt number depends strongly on them
the transport-dispersive model in gradient elution.c 50.6, t 5F p local values of thek , k coefficients.St increases0 1 m0.3 [2]. Gradient A. Solid line, the solution with the general rate distinctly with increasing modifier concentration and
model; symbol 1, local values ofSt number related to localm after achieving a maximum drops slowly (Fig. 13).isotherm parameters [Eqs. (45) and (46)]; symbols 2 and 3, final

This phenomenon can be explained by the effect ofand initial constantSt numbers (Table 2,gradient A).m

the variation of the Henry constant (H ) on the
coefficientsk , k . For higherH the contribution of0 1

2 the term (1/k 11) in Eq. (38) prevails andSt1 m

increases with decreasingH. In the range of lowH
(H,1) its influence onk vanishes while the term1

2k /(11k ) decreases continuously [compare Eqs.0 0

(38), (41) and (42)]. For illustration the values of the
St calculated for the initial and final saturation levelm

related to the start and the end of the gradient
program are summarizedTable 2.

4 .3.2. Equilibrium-dispersive model
The same analysis was performed for the equilib-

rium-dispersive model. In gradient elution the
equilibrium-dispersive model with constant axialFig. 10. Comparison between simulations with the general rate
dispersion coefficient also gives better results com-and transport-dispersive model in gradient elution. Gradient B

(Table 2,gradient B). Lines as inFig. 9. pared to those generated by the corresponding trans-
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Fig. 11. Comparison between simulations with the general rate
Fig. 13. Variation of the apparent Peclet number (corresponding toand the equilibrium-dispersive model in gradient elution. Gradient

effN ´ /´ 5Pe /2), the lumped Stanton number and the retentionA. Solid line, solution with the general rate model; symbol 1, local e t a

factor with the modifier concentration.values ofPe number [Eq. (46)]; symbols 2 and 3, final and initiala

Pe numbers (Table 2,gradient A).a

5 . Conclusion
port-dispersive model. However, the influence of
retention dependence can be pronounced for strong The influence of concentration and retention de-
gradients, for which the sample components are pendences of apparent dispersion and mass transport
weakly retained or non-retained at the end of gra- coefficients on the accuracy of band profile predic-
dient (compareFigs. 11 and 12). The variation ofPe tion using the lumped equilibrium-dispersive anda

is illustrated in Fig. 13. The values of thePe transport-dispersive models has been discussed. Thea

number related to the initial and final saturation level simulations of both the models were compared
are shown inTable 2. between each other and with the general rate model.

It is evident (inFig. 13) that the influence of the For isocratic elution the assumption of constant
modifier concentration changes on the apparent lumped coefficients in the commonly used equilib-
Peclet number is smaller than on the lumped Stanton rium and transport-dispersive models leads to inac-
number. The former reaches an asymptotic value curacies in the prediction of band broadening in low
whereas the latter varies in the whole range of efficiency systems. However, due to the typically
modifier concentrations or retention factors. strong peak dilution in chromatographic processes,

enhanced by kinetic effects, the concentration depen-
 dence of the lumped transport coefficients can be

often neglected. Both the lumped models studied can
be safely used in a broad range of column efficien-
cies. Errors in predictions using constant parameters
are most probable in simulating bands undergoing
severe concentration changes. Thus, errors can be
expected in particular in simulations of chromatog-
raphy processes where concentrating effects are
involved as in displacement chromatography. Due to
the character of the concentration dependencies the
lumped mass transport coefficient appears to be more
sensitive to concentration changes than the apparent
axial dispersion coefficient. Thus, the lumpedFig. 12. Comparison between simulations with the general rate
equilibrium-dispersive model with constant apparentand the equilibrium-dispersive models in gradient elution. Gra-

dient B. Lines as inFig. 11. axial dispersion coefficient generated in our study
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more accurate results in simulating band profiles m moment of the chromatographic
compared to the lumped transport-dispersive model. band profile

effFor gradient elution an additional dependence of N number of theoretical plates [Eq.
the lumped transport coefficients arises that usually (20)]
cannot be neglected. Profiles, which are calculated N number of theoretical plates corre-edm

with constant lumped coefficients can be very inac- sponding to the equilibrium-disper-
curate, especially when the transport-dispersive sive model
model is used. Hence, for moderate and low efficient N number of theoretical plates corre-grm

systems the ‘‘modifier’’ dependence of the lumped sponding to the general rate model
coefficients should always be accounted for. N number of theoretical plates corre-tdm

sponding to the transport-dispersive
model

p parameters in Eqs. (5) and (6)Kr

6 . Nomenclature p parameters in Eqs. (5) and (6)H

q adsorbed phase concentration
a external surface of adsorbent pellet: (kmol /kg)p

26
] *a 5 for spherical particles (m / q stationary phase concentration inp idp3m ) equilibrium with the local stagnant

c concentration in mobile phase mobile liquid concentrations (kmol /
3(kmol /m ) kg)

`c concentration in the stagnant liquid q loading capacity (kmol /kg)p i
3phase (kmol /m ) Q dimensionless adsorbed phase con-

C dimensionless concentration in mo- centration
*bile phase Q dimensionless adsorbed phase con-

C dimensionless concentration in the centration in equilibrium with thep

stagnant liquid phase local stagnant liquid phase concen-
d equivalent particle diameter (m) trationsp

2D effective diffusion coefficient (m / r radial coordinate (m)eff

s) R dimensionless radial coordinate
2D axial diffusion coefficient (m /s) t time (s)L

F 5 (12´ ) /´ phase ratio t time of a rectangular pulse injectiont t t p

F 5 (12´ ) /´ u superficial velocity (m/s)e e e

F 5 (12´ ) /´ w 5 u /´ 5interstitial velocity (m/s)p p p t

H Henry constant x axial coordinate (m)
k retention factor of the component in y dimensionless concentration in mo-0

the column bile phase
k retention factor of the component in y dimensionless concentration orp p

the particle average dimensionless concentra-
k external mass transport coefficient tion in the stagnant mobile phaseext

(m/s) z dimensionless axial coordinate
k overall mass transport coefficientov

(m/s) Greek letters
k lumped mass transport coefficient ´ , ´ , ´ external, internal and total voidm e p t

(m/s) fractions
3K equilibrium constant (m /kmol) m absolute errorr

L column length (m) m9 central error
3m parameters in Eqs. (5) and (6) r solid mass density (kg/m )Kr s

2m parameters in Eqs. (5) and (6) s variance (second central moment)H
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