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Abstract

The general rate model provides a reliable platform to predict elution bands in both linear and non-linear chromatography
provided the required equilibrium functions and the coefficients quantifying the mass transfer in and around the particles are
available. If further the variation of the equilibrium functions with changes in the mobile phase composition is known, this
model is also able to predict gradient elution chromatography. Significant disadvantages of the model are the need to specify
three kinetic coefficients and the amount of computing time required for the numerical solution of the underlying equations.
Thus, several simplified models have been suggested lumping mass transfer resistances together. In this work the accuracy o
predicting chromatographic bands based on the numerical solution of two lumped models has been analyzed. Elution profiles
calculated by (a) the transport-dispersive and (b) the equilibrium-dispersive models were compared between each other and
with the solution of the more detailed general rate model. In the analysis performed both linear and non-linear
chromatography was considered under isocratic and gradient conditions.
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1. Introduction balance equations for axial dispersion and mass

transport resistances in and around the particles.

The application of various mathematical models Thus, three kinetic parameters need to be specified.

for the simulation of chromatography and adsorption The solution of the equations of the general rate
processes has been discussed in several excellent model further requires the application of advanced
monographs[1-3] and a review[4]. For accurate numerical techniques (as, for example, orthogonal
predictions the so-called general rate model has been collod&tiép) and significant computation times.
suggested and was frequently applied successfully For these reasons a number of models simplifying
[3]. This model accounts in the differential mass the transport processes have been pigp®ked

One of the most successful simplified models ca-
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tions to band broadening are quantified using an with the lumped transport-dispersive models. As a
apparent axial dispersion coefficigi®]. This coeffi- reference the solution of the general rate model was
cient can be estimated from the shape of measured used. The analysis has been performed for isocratic
analytical peaks. Alternatively, in order to quantify and gradient chromatography. Due to the introduced
chromatographic processes with slow mass transfer changes of the mobile phase composition during
kinetics the so-called lumped transport-dispersive gradient elution a more pronounced effect of con-
model has also been frequently usgy10]. This centration on the values of the equivalent lumped
model uses the intrinsic axial dispersion coefficient axial dispersion and mass transport coefficients was
and lumps all the remaining mass transport resis- expected than for isocratic elution.

tances into an overall mass transport coefficient. The

latter coefficient has often been determined by fitting

simulated band profiles to experimental results. The o Theory
solution of the two lumped models is relatively

simple and does not require sophisticated numerical T, gescribe the models developed to simulate

methods. Various finite difference methods can be chromatographic separation processes it is conveni-

utilized. To simulate elution profiles under isocratic gnt tg introduce dimensionless parameters. Following
conditions in particular the forward-backward algo- widely applied convention§l7], the following di-

rithm [11] is a good tool to solve the underlying yensionless variables will be used:
model equations. To analyze gradient elution bac-

kward-forward schemes and the Craig algoritm ,_X. o_'. __ W ._c
have been appliefil2]. L R, Le, Py

In linear chromatography and for isocratic elution % _pQ. Pe— uL
the contributions to band broadening of different ~» g~ Q= o’ €= D &’
mass transfer kinetics a_nd axial d|spers_|on are ad_d|- Kex@,l e,  koR, 1-e, 1)
tive and can be lumped into apparent axial dispersion & = —u Bi = D’ F.= .
or mass transport coefficients. The general rate and eff €

AT ; . , l-¢ 1-¢

the equilibrium- or transport-dispersive models with g — P. F,= t
lumped coefficients can generate equivalent solutions P p &

provided the applied coefficients are properly ad- with & =&, +(1— &Je,

justed [13,14]. If non-linear conditions are consid- ) ) )

ered, an agreement with the general rate model can All symbols used in Eq. (1) are explained in the

be achieved only if concentration dependent co- Nomenclature t_Je|OW- 'I_'he e_Ssentlf’:ﬂ parameters quan-

efficients are applied in the lumped models. The jufylng convection, axial _dlsper5|on, external and

concrete dependencies required to achieve a goodintérnal mass transfer resistances ar®, , k., and

agreement are usually difficult to specify and have to DPerr- Each of the dimensionless numbéts S and

take into account the specific courses of the ad- Bi contains two of these rate determining parameters.

sorption isotherms. However, the application of

complex functions for the apparent transport co- 2.1. Mathematical models

efficients destroys the convenience of the simplified

lumped models. Thus, it appears to be instructive to  Below three models capable to quantify chromato-

study the loss of accuracy connected with the usage graphic processes will be presented. At first the most

of constant coefficients in these lumped models. In a detailed general models will be introduced. Then two

preliminary work it has already been observed that simple models using lumped mass transfer coeffi-

the application of constant values leads to inac- cients will be explained. More details concerning

curacies especially for low column efficiencies and these models can be found elsewh8®,16].

strongly non-linear adsorption isotherrfis,16]. The general rate model consists of two partial
In this work the elution of single components was differential mass balance equations for the changes

predicted with the lumped equilibrium-dispersive and of the concentrations in the mobile phase and of the
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loading in the stationary phase. With the defined
dimensionless variables this model can be expressed
as:

(i) the differential mass balance equation for the
mobile phase:

i iC_1 G, ic
a7

~F(C-CJr-1) (2)

9z Pe L g2
(ii) the differential mass balance equation for the
stationary and the stagnant liquid phase

G 1-.0Q0 _ 1 9
& 5 T ) 5 =38 R2 IR
aC
(=) ®)

which, for an established adsorption equilibrium
within the stationary phase can be rewritten in the

form:
aC S 1 9 ( oC >
_r_ . p2. =P
Atk G =23 R \R R/ (33
with
dQ*
6 =Fy o (3b)

Egs. (2) and (3) are complemented by an equilib-
rium relationship coupling in Eqg. (3b) the stationary
and stagnant liquid phase concentrations. In this
work the adsorption equilibrium was described by
the single component Langmuir equation:

HC, o

p —

S L 4
Q" =ITKC, )y, (4)

where for H holds: H=q"K,, with the loading
capacityq” and the equilibrium constark, .

If in gradient elution the mobile phase composi-
tion is varied during the process due to changes of a
modifier concentrationC, . the local equilibrium
can be expressed as:

. HCwdCy  p
Q B 1+ Kr(Cmod)Cp pl’

mod

%)

where the functional dependencies of the two iso-
therm parameters o, have to be determined

usually experimentally. In this work a dependence of
H on the modifier concentration was suggested,

63

which was found to be valid for normal-phase

sy§1&9]:

H :(pHCmod)imH (6)
The same type of functional dependence was also
assumed foiK,, i.e.:

Kr :(pKrCmod)mer (7)

Thus, the quantitative description of the equilib-
rium loadings requires for gradients the specification
of the four parameterg,,, m,, Py, andm,,.

The local concentratio,,,, can be calculated by
solving Egs. (2) and (3) for the modifier coupled
with its adsorption isotherm equation. If the con-
centration of the modifier is much higher than the
sample concentration, approximately a single com-
ponent adsorption isotherm model as given with Eq.
(4) can be usedR0,21].

The following initial and boundary conditions
complete the general rate model:

(i) initial conditions:

C(r=0,2=C° 0=z=1 (8)
C(r=0,R2=C"% Q*r=0,R2=0Q*(C"
0=R=1, 0=sz=1 (9)
where:C° = 0 for the component an@°=C?_, for
the modifier.

(i) boundary conditions for Eq. (2) ang>0:

" 1 0C(r,z=0)
CF(T,Z=0)—C(T,Z=0)=%'T (10)

For the components a rectangular pulse injection is
assumed, i.e.:

z=0)={

For the modifier a linear concentration gradient is
assumed starting after the injection is finished:
Clmod72=0)
Cemoa for 7€[0, 7]
Cemoa T B(T — Tr) for 7,>7> Th
Cemoa T B(Te— 7)) for r>r7,

C: for 7€ [0, Tp]

Ce(n 0 for >,

(10a)

(10b)
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where 8 is the gradient steepness apdlesignates dQ*(C)
the end of the gradient. ko, =F,- ac (14b)
aC
0z S =0 (11) All contributions to band broadening are lumped
into an apparent dispersion coefficient and then into
(iif) boundary conditions for Eq. (3) and>0: the apparent Peclet numb&e,=uL/D_e, Thus,
9C (7,2 R) internal and external mass transport kinetics are
pa—R =Bi(C-C,(rzR=1)) accounted for indirectly and coupled with axial
R=1 dispersion. Consequently, for the apparent Peclet
0<z<1 (12)  number should holdPe,<Pe. Usually Pe, is de-
9C termined from the variance of a peak registered
(1 Z R) . . . .
—r =0 0=z=<1 (13) under linear conditions. _Typlcally, the same value is
R=0 then used to also describe the chromatograms under

As mentioned above, the essential dimensionless Overloaded condition§3]. _

parameters of the model quantifying band broaden- ~ The transport-dispersive model is based on a mass
ing effects arePe, & and Bi. There are several balance equation similar to Eq. (14). The difference

methods available to estimate the order of magnitude iS based on the fact that the loading of the solid

of these parameterfl7]. To predict Stanton and Phase is not assumed to be in equilibrium with the

Peclet numbers, correlations recommended or usedliquid phase concentration and the dispersion term is
by Wilson and Geankoplig22], Chung and Wen  expressed, as in the general rate model, considering
[23], Morbidelli et al. [7,8] and Storti et al.[24] just axial dispersion:

appear to be most useful. 5
The numerical solution of the general rate model £+ Ft,ﬁ & 0C_2 1 0 (2: (15)
requires reliable methods and algorithms. To solve aT T & 0z & Pe gz

this type of equations the orthogonal collocation
method is very suitabl¢s]. However, the necessity
of simultaneously calculating concentration profiles
in the column and within the particles leads to
relatively long computation times. Thus, as an
alternative approach the lumping together of several a7 S.,(Q* —Q) (16)
effects and the simplification of the general rate
model has been suggested. The most frequently usedyhere
models of this type are the equilibrium-dispersive
and the transport-dispersive models which will be g = KL e
described below. m u

The equilibrium-dispersive model consist of a
single differential mass balance equation for eac

To quantify the accumulation in the solid phase the
following simple linear driving force approach is
used[1,3,25,26]:

h The contributions of the externak(,) and the
internal mass transport ratle, () are lumped into the

component coefficientk,,. The coefficient,,, can be related to
£+ E. 9Q*(C) +E'£:E.i_62_0 (14) the effective diffusion coefficienb,, [24]:
ar 't o7 g 9z g Pe, 922 5D
If a permanent equilibrium between the two phases is Kint = Teﬂ (17)
assumed holds: .

IC e oC e 1 2c In most applications of the model, the lumped
(L+ko) 5+ ;f o, = 8—: Pe. of (14a) parameters  or &, are assumed to be constant and

typically estimated by fitting simulated and measured
with peaks recorded under linear conditions.
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2.2. Plate number equations phenomena in chromatographic columj#s14,27—
) 29]; in the corresponding plate number and plate
2.2.1. Moment analysis and plate numbers height equations all non-equilibrium effects are

In order to compare the different models used in 5qqitive. For the first absolute and second central

this work it is instructive to_ analyze the corre- 1 oments corresponding to the general rate model
sponding numbers of theoretical plates. Based on pggs:

classical residence time analysis plate humbers can
be determined from the first absolute moment,

=——-(1+k 22
and the second central moment, (which corre- 't (ul&) (1+k) (22)
sponds to the variance®) of a calculated band oL
: : . 2_ o _ 4=
profile. These moments are defined as follows: o= e = WUy (8axF Soret 8,1 (23)
ftC(t)dt where: 8, 8., 6;, are contributions of axial disper-
o sion, external and internal mass transport resistances
i — (18) to band broadening. For these contributions holds:
J C(t)dt D,
8, = ‘(1+ky)2
0 ax (U/é‘e)z ( l)
[P 1L :
J (t — u,)°C(t)ct =Pe’ (Ule) (1+ky (24)
! 2 0
Mp=0" =" (19)
: 5. = d, KB = t L . K2 (25)
C(t)dt ext Bk, F. * SF, (ulg) ?
0 2
The corresponding number of theoretical platé$’, 5 = ds K= B _L (26)
is: in " 60D,F, * B5IF, (uls)
u? The constank;, is expressed as:
eff 1
N == (20) )
7 k1=Fe-<.9p+(1—gQH-—S>
Thus a column of length has the following height Pr
equivalent to a theoretical platelETP: —F ¢ ,<1+ FH ,&) (27)
erp P
_ eff _ Lo® r
HETP =L/N"" = 2 (21)  whereH - p./p, is the isotherm slope, i.e.:
1
To achieve a close agreement between predictionsH Ps _ dQ* (27a)

of band profiles using different models it is necessary p, dC
that at least the corresponding theoretical moments Substituting Egs. (22—-26) into Eq. (20) the fol-

defined meflfzqs' (.18) gnd (19) and thus the plate lowing equation can be derived to specify the plate
numbersN®™" are identical (or very close to each number of the general rate modél,
grm*

other). Perfect agreement can be expected of course

only if the higher moments, not considered here, are 1 2 < K, >2 [ Bi 1 ]
. . =—4+2. . +
also identical. Ny P€ 1+k, 5FS  FX
2.2.2. Plate number equations. isocratic mode 2 Lo k, \? 1 28
=pet2\17k) Fa., (28)

2.2.2.1. General rate model
(i) Linear isotherms. For linear conditions there In the above for the overall Stanton numbSt,,
exist well know treatments quantifying dispersion holds:
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g kK ale before and after the concentration jump akdis
= —— - F ¢ (29) related to the corresponding retention time of the
ov  1+Bi/5 u . .
front. Thus, as in linear chromatography, the vari-
Typically, in chromatographic processes the con- ance of a certain shock front can be described with a
tribution of external mass transfer resistances is _single constant plate number. Although self-sharpen-
small [30]. Then the term (1#.) can be neglected ing fronts begin to form frequently in preparative

S

in Eq. (28) simplifying Eq. (29): chromatography, the column lengths applied are not
always sufficiently large to allow for the complete
S :E (29a) formation of the constant pattern behavior.
°v  BI In contrast to self-sharpening fronts, dispersed

fronts also occur due to isotherm non-linearities.
These dispersed fronts are characterized by a thermo-
dynamically determined retention time distribution.
The corresponding concentration dependentval-

ues must be related to the local isotherm slope. They
vary with the local concentration according to:

Then the ratio/Bi can be treated as an adjust-
able parameter that can be determined by matching
experimental and simulated peaks under linear con-
ditions. Since the determining oF, is usually
difficult this parameter can be further lumped to-
gether with the ratio/Bi and F_S/Bi can be

determined from experiments. _ ( . dQ*)
For the overall mass transport coefficidg), in K(C)=Fe {2+ (1-2) dC (32)
Eqg. (29) holds: with
1 1\t dQ* H p
Koy =(T—+7— 30 = =
ov <kext kim> (30) dC  (1+KC)?2 P (329)

(i) Non-linear isotherms. The analysis of vari- These concentration dependéqgtvalues instead of
ances or plate numbers characterizing a chromato-Eq. (27) are capable of describing the variances of
graphic peak or a breakthrough curve becomes moreresponses curves belonging to small pulses injected
complex if the adsorption isotherms are non-linear. on certain concentration levels.

Now these quantities do not depend only on the  Overloaded peaks under non-linear conditions are
Henry constant and the mass transfer parameters butypically characterized by the presence of com-
also on the concentration range covered. As shown pressed and dispersed fronts. A general prediction of
by Rhee and AmundsofB81] there is a simplified  the variance of such elution profiles also considering
analysis possible for self-sharpening fronts that are mass transfer resistances is only possible by numeri-
characterized by very rapid concentration changes. cally solving the equation of a column model. To
Such fronts establish in case of favorable isotherms find conditions under which the results of different
and for sufficient column lengths. Under these column models converge as closely as possible
conditions the contributions of axial dispersion and requires tedious numerical calculations. Below in-
external and internal mass transport resistances arestead the use of just Egs. (31) and (32) will be
additive even under non-linear conditions. To esti- attempted, to match as closely as possible the
mate the variance of such shock layers the equationspredictions of the three models considered in this
presented above can be used, provilgth Eq. (27)  paper. For this it remains to specify the plate height
is calculated differently based on the isotherm chord equations for the equilibrium-dispersive and the

[32], i.e.: transport dispersive models.

Q*(C4l.) — Q*(CJ)
k, = Fe-<8p+(l— £~ (cl. —CJ) )

2.2.2.2. Equilibrium-dispersive model
In the equilibrium-dispersive model all contribu-
(31) tions to band broadening are lumped into the appar-
ent Peclet numbeRe,. For linear condition the plate

Above theC_| ,C, designate the concentrations number of the equilibrium-dispersive mod@l! |
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can be simply calculated from this quantity accord-
ing to:

1 o g 2
Neff le

edm

& Pe,

(33)

Obviously to match the solutions of the equilib-
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After rearran@ngcan be expressed as:
k0 1 2 ‘9eF eS ov
szi-(—+1> — (38)
(1+ko)? Ky &t

As for thek, above [Egs. (31) and (32)] for shock
layers formed under non-linear conditions can be

rium-dispersive and the general rate models should @ssumed:

hold Ny, = N, i.e.

edm

i_iJr LU S 34

Pe, Pe '\1+k,) FI., (34)
Thus, in order to use successfully the simpler

equilibrium-dispersive model, equivalent apparent

Peclet numbers have to be applied. To determine ko=F

such numbers the values B, k,;, F, and& , have
to be provided.

If concentration dependeRy values are used [Eq.
(32)], the apparent Peclet number will also be
concentration dependent, iRe, = Pe (C). For typi-
cal chromatographic conditions usually the term
1/Pe in Eq. (34) is small compared to the contribu-

. Q*(Cs|+) B Q*(Cs|f)
(Cs|+ - Cs|—)

k, =F, (39)
Analogously to calculatds, for dispersed fronts the
local slope of the isotherm can be applied:

H Ps

CA+KO? P (49

The second moments corresponding to the trans-
port-dispersive model become equivalent to that
corresponding to the general rate model if the
lumped Stanton numbe&,,, fulfills Eq. (37). To
realize this matching the required parameté&gsk,,
£, &, Fo and &, have to be provided. If con-

er

tions of the two mass transport resistances quantified centration dependem, andk, values are used also

by &,

2.2.2.3. Transport-dispersive model

Based on an analytical solution of the transport-
dispersive model for linear isotherms, Lapidus and
Amundson[13] quantified band broadening effects.
The corresponding plate height equation of this
model can be written in the following dimensionless
form [15,16]:

1 2
NEH ~ Pe

tdm

ko \? &
t2\15x ) aka.

where k, is the retention factor, which for linear
conditions is expressed as:

(35)

Ps
ko=FH- > (36)
Matching N, and N5y, [i.e. Egs. (28) and (35)],
one obtains:
k, \2
1 1+k, &
=k (37)

Sm . 0 2 ‘9eFeS ov
1+K,

the lumped Stanton number will be concentration
dependent, i.e&,,=%,,(C).

2.2.3. Plate number equations. gradient elution

In order to simulate elution processes under
solvent gradient conditions an additional differential
mass balance equation for the modifier has to be
solved. The isotherm parameters of a certain solute
are not constant but depend on the local modifier
concentration. This leads to the fact that for gradient
elution the two coefficientk, and k, [(Egs. (31),
(32), (39), (40)] also vary with changes of the
mobile phase composition. Thus, the concentration
dependencies of the appareP¢, number and the
lumped &,, number are more complex than for
isocratic conditions. Again a simplified situation is
encountered if the isotherms of the solutes remain
linear for all solvent compositions.

2.2.3.1. Linear isotherm
For linear conditions the local values of the
coefficientsk,; k, can be simply expressed as:

k, = Ft-<H(cmod) -%f) (41)
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Ps

Pr]

(42)

k, =F,- I:gp-}—(l— sQH(CmOJ c—
where againH(C,,. - pJ/p, is the initial isotherm
slope, i.e.H(C,,,o " pdp,= (dQ*/dC)|._, for the
concentration of the modifier &,. The local values

of H can be calculated from the local modifier
concentration, provided the mutual dependence is
known.

2.2.3.2. Non-linear isotherm

If the isotherms are non-linear the situation is very
complex. The simplest case is again the description
of the migration of shock layers, which can be also
formed under gradient conditions. For such fronts the
values ofk, andk, depend in the following manner
on the local modifier concentrations:

- Ft,(Q*(CSL, Crod) = Q*(Cl_ Crod )
(43)

(Cls =€)
k, = Feap<1 +

(1-&)
%

. Q*(Cs|+v Cmod|+) - Q*(Cs| — Cmod| )>
). —cl) (44)

where C| _,C,, C,od_»Cimod . are related to the
concentrations of the plateaus before and after the
concentrations jump. This analysis is valid provided
that competition between sample and modifier can be
neglected. This is often the case in gradient chroma-
tography, wherein concentration of the maodifier in
the mobile phase is markedly higher than that of the

D. Antos et al. / J. Chromatogr. A 1006 (2003) 61-76

H(Crod
[1+ K{(CinodC]?

k1=Fe-{gp+(l—8p)- } (46)

In order to determine these values the local
modifier concentration profileC (7, 2) has to be
known.

From the above it is evident that under gradient
conditions a close matching between the results of
the general rate model and the results of the two
lumped models is more difficult. To reach this goal it
is obviously required to include in the lumped
coefficients in addition to the local concentration of
the solutes also the local mobile phase composition.

3. Numerical methods

The three models introduced above were used for
simulating band profiles for different isocratic and
gradient conditions. Systems of ordinal differential
equations were obtained after discretizing the partial
differential equations using the orthogonal colloca-
tion on finite elements methofb]. These ordinary
differential equations were integrated using the
VODE procedurd33] for relative and absolute error
of 107°. This procedure automatically chooses the
appropriate time increment to fulfill the specified
error conditions. In each calculation the number of
internal collocation point§5] was equal to 3 for the
column and equal to 4 for the particles (for solving
the equations of the general rate model). The number
of subdomains chosen guaranteed that no visible
oscillation in band profile calculations occurred.

In order to simulate the gradient process the

sample, hence adsorption of the sample does notddequate differential mass balance equations [Egs.

perturb adsorption equilibrium of the modifier.

Otherwise competitive isotherm equations must be
applied. The general difference from the isocratic
situation [Eqgs. (31) and (39)] is the fact that the
speed of the fronts is influenced by the modifier
concentration.

For simulating dispersed fronts concentration de-
pendent parametellg, and k, can be estimated by
again replacing the isotherm chord by the local
isotherm slope, i.e.:

F . H(Cmod)
t {[1+ Ki(CnodC1?

k, = (45)

(2) and (3) for the general rate model, Eq. (14) for
the equilibrium-dispersive model and Egs. (15) and
(16) for the transport-dispersive model] were solved
together for the sample component and the modifier.
A detailed description of the procedure applied can
be found elsewherg0].

4. Results and discussion

4.1. Model parameters

The model parameters used in the simulation study



D. Antos et al. / J. Chromatogr. A 1006 (2003) 61-76 69
Table 1
Model parameters used in the simulation study
&, e, p. H K, cr Pe N"e Je, 3S/Bi
(kg/m*) -) (m*/kmol)
0.33 0.52 1960 8 4 0.1-0.6 1000 275 or 44 100 or 5

are summarized inTable 1. The value for the
reference density was assumed todHe1. In this

case the dimensionless concentrations in the mobile

and stagnant liquid phase§, and C,, correspond
exactly toc andc,. As indicated by the product ¢,
and the maximal feed concentratior}s(4*0.6=2.4)
the process was investigated up to strongly non-
linear conditions. The simulations using the general
rate model were performed witiPe=1000. By
varying the ratio/Bi in two steps a relatively low
and a relatively high column efficiency could by
analyzed. For different conditions, as a reference
solutions of the general rate model were calculated.
The lumped equilibrium-dispersive and the transport-
dispersive models were solved with apparétd,
[Eq. (34)] andS,, [Eq. (37)] numbers as described
above. In order to take into account concentration
effects, the required values fd, and k, could be
calculated in different ways. The following three
options were considered:
(1) Egs. (27) and (36) [or Eqgs. (41) and (42) for
gradients], valid for linear conditions

0.6+

0.4

¢ [kmol/m?]

024 2\

00 r

Time [-]

Fig. 1. Reference profiles calculated by general rate model with
$/Bi =100, Pe=1000. Curve 1,c.=0.6, 7,=4.5[-] (the in-
jection volume is 225% of the column dead volume); curve 2, the
same as curve 1 bud.=0.2; curve 3, the same as curve 1 but
c.=0.1; curve 4, the same as curve 1 loyt=0.02; dashed line,
the same as curve 1 buf =0.15[-] and injection volume is
7.5% of the column dead volume.

(2) Egs. (31) and (39) [or Egs. (43) and (44) for
gradients], applicable for shock fronts
(3) Egs. (32) and (40) [or Egs. (45) and (46) for
gradients], applicable for dispersed fronts
In extensive preliminary calculations, not illus-
trated below, it was confirmed that for linear con-
ditions (i.eKfer0) the lumped models are indeed
equivalent to the general rate model provided the
appliedPe, and &,, numbers are in agreement with
Egs. (27) and (36) [or (41) and (42) for gradients].

4.2. |socratic mode

To cover typical non-linear situations a series of
injections of identical sample volumes with different
feed concentrations (reaching the non-linear range of
the isotherm) was simulated using the general rate
modelFig. 1lillustrates for a relatively high column
efficien®e & 1000, S/Bi = 100) the well known
effects of formation of sharp and dispersed fronts
and the erosion of the concentration plateau corre-
sponding to the feed concentration if small con-
centrations are injected. In profile 1 the shock layer
and the dispersed front are still separated by a
plateau corresponding @ =0.6. For decreased feed
concentrations the plateau disappears and the sharp
and dispersed fronts merge (profiles 2 and 3). If the
concentrations are sufficiently low the sharp fronts
also disperse (profile 4). The dashed profilé=ig. 1
illustrates the effect of changing the injection volume
for maintained sample amount compared to profile 4.
Further reference profiles were calculated but for a
relatively low efficiency &/Bi =5).

Before analyzing the results obtained with the two
lumped models it is instructive to evaluate the
concentration effects on the correspondikg k,,
and Pe,, &, values for the range studied (i.e for
C™"=0 and C™**=0.6). The concentration depen-
dence of the apparefi®e, number [Eq. (34)] applied
in the equilibrium-dispersive model is related to
[(k, +1)/k,]°. For the reference parameters used here
and applying Eq. (32), this term is 1.12 f&™" and
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2 for C™ [Eq. (32)]. For the chord connectir@™"
and C™ results an intermediate value of 1.4 is
found [Eq. (31)]. The concentration dependence of
the &, number is according to Eq. (37) related to
the termk, ((1+k,)?/(1+k,))° Applying again Egs.
(32) and (40) yields for this term 0.12 (f@™"=0)
and 0.48 (forC™®. For the corresponding chord
[Egs. (31) and (39)] a value of 0.30 is obtained.
Obviously, there is a stronger concentration effect on
the lumpedS,, number than on the appareRe,
number.

In the following the accuracy of predicting the
calculated reference profiles with the two lumped
models will be analyzed for two different levels of
column efficiency.

4.2.1. Relatively high column efficiency
At first simulations were carried out féte=1000
and S/Bi =100, i.e. for a relatively efficient column.
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sponding t0S,,=19.6 andPe,=550 (orN *"s /& ,=

275). It is evident that the accuracy of predictions

with both lumped models using cdrestamd S,

numbers is relatively good compared to the solution
of the general rate model. Egs. (27) and (36), i.e. the

constant initial isotherm slope, were also used to

simulate with the two lumped models the rather
diluted elution profile corresponding to the dashed
linBign 1 (cV**K, =0.4<1). The results shown in

Fig. 3 reveal a similar agreement between the three

models as for the breakthrough curves showkign

2.

These and further results indicate that for the
description of band profiles for relatively high col-
umn efficiencies (theoretical plate numbers larger

than N°"¢_/£,>200) constant lumped coefficients
taken from the initial isotherm slope might be

successfully applied.

Breakthrough curves corresponding to profile 1 in 4.2.2. Relatively low column efficiency

Fig. 1 were calculated with the two lumped models

For lower column efficiencies=(000 and
eff

using the three possible options available to estimate St/Bi =5 corresponding tdN™"¢,/¢,=44) and non-

the k, andk, values. For both lumped models these
options gave similar results. IRig. 2 are depicted

(together with the breakthrough curve which was
calculated with the general rate model) the results of
the two lumped models using Egs. (27) and (36)

based on the steepest (initial) slope and corre-

0.6

0.5

0,4

¢ [kmol/m?]

03 !
1
i
024 1

0,14

0,0 Y ¥ T T T T T
Time [-]

Fig. 2. Comparing predictions of a breakthrough curve for a
relatively high efficiency ®&/Bi = 100, Pe = 1000). Parameters
correspond to curve 1 ifrig. 1; solid line, general rate model;
crosses, equilibrium-dispersive mode\*"s /s, =275, k, Eq.
(27); dashed line, transport-dispersive mo&el,=19.6,k, andk,

from Egs. (27) and (36).

linear conditions the differences of the predictions of
the three models were found to be more significant

than for higher efficiencies.

At first the breakthrough curvé-igoth(profile

1) was recalculated for the lower efficiency with all

models. In the calculation with the two lumped
modelsk,; and k, were determined (a) using again
Egs. (27) and (36) (exploiting only the initial

0.030

0.025+ Y

3

0.020 J
]

)

0.0154 !
!

1]

¢ [kmol/m3]

0.010-

0.005

0.000 Y Y T T t
Time [-]

Fig. 3. Comparing predictions of elution profiles for a relatively
high efficiency $/Bi = 100, Pe = 1000). Parameters correspond
to the dashed line ifrig. 1. Lines and symbols correspond fig.

2. k, andk, from Egs. (27) and (36).
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isotherm slope), (b) using Eqgs. (31) and (39) (ex-
ploiting the isotherm chord) for simulating the /
sharpened front and (c) using Egs. (32) and (40) 05 ]
(exploiting the concentration dependent local slopes) ‘
for simulating the dispersed front. The accuracy of
simulations using the equilibrium-dispersive model
was already acceptable with a const&ef, number
according to Eqgs. (27) and (36), i.e. influence of the
isotherm non-linearity on the prediction quality was
negligible. The most pronounced inaccuracies were — °'q |
exhibited by simulations of the transport-dispersive o b,

model with a constanf,, number [Egs. (27) and 5 1 15 ' 20 25
(36)]. The accuracy of predicting with this model the Time [

sharpened and the dispersed front was significantly Fig. 4. Influence of a model type on the accuracy of the band
improved when the non-linearity of the isotherm was broadening prediction for a relatively low efficiency. Model

accounted for by the corresponding Egs. (31) and parameters as ifiable 1and for curve 1 irFig. 1. Solid line, band
(39) or (32) and (40) profiles calculated with the general rate model; dashed line,

) . transport-dispersive mode,,=2.2 k,, k, from Egs. (27) and

Fig. 5 shows the concentration dependence of the (3e)); crosses, equilibrium-dispersive mod®l"s, /2, =44 [k,
two lumped parameterBe, and &, corresponding from Eq. (27)]; dotted line, transport-dispersive model with the
to the dispersed fronts given Fig. 4 and calculated ~ non-linear correction;, k, from Egs. (31) and (39) for the
with Egs. (32) and (40). Obviously the change in the sharpened front and from Egs. (32) and (40) for the dispersed
size of the parameters is much more pronounced for front]
the parameter of the transport-dispersive mo8e|,
Averaging this latter value appears to be critical and
had already been found to cause inaccurate results in
the description of breakthrough curves of bovine
serum albumin (BSA) in anion-exchange chromatog-
raphy[16].

Subsequently chromatographic band profiles were
calculated for an injected amount not sufficient to
reach at the column outlet the injection concentration

0.34

¢ [kmol/m?]

0.2+

(compare curves 2-Eigin 1). As could be
expected, the application of Egs. (31) and (39) in
combination with the feed concentration delivered
such condtardnd k, that led to profiles sig-
nificantly too sharp. Thus, iRigs, 6 and 7are shown
only the results for the caseskwherk, were
calculated using (a) Egs. (27) and (36) (constant
isotherm slope) and (b) Egs. (32) and (40) (local
isotherm slope). The same trend ashig. 4 was

170
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Fig. 5. Concentration dependence &f, and Pe, numbers in
simulations of dispersed fronts in isocratic mode corresponding to
the dispersed front ifrig. 4 according to Egs. (32) and (40).

Fig. 6. Influence of a model type on the accuracy of the band
broadening prediction for a relatively low efficiency. Lines as in
Fig. 4, model parameters as ifable 1and for curve 2 inFig. 1.
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Fig. 7. Influence of a model type on the accuracy of the band
broadening prediction for a relatively low efficiency. Model
parameters as ifiable 1and for dashed line ifrig. 1. Solid line,
band profiles calculated with the general rate model; 1, transport-
dispersive model3,,=2.2 [k,, k, from Egs. (27) and (36)]; 2,

equilibrium-dispersive modeN°®"¢,_/s,=44 [k, from Eq. (27)]; 3,
transport-dispersive model with the non-linear correctikp k,
from Egs. (31) and (39) for the sharpened front and from Egs.

(32) and (40) for the dispersed front].

observed, i.e. the simulations with the transport-
dispersive model were the most inaccuratég( 7).
The differences between simulations of all models
vanish the more the peaks are diluted (frbig. 6to

Fig. 7).
4.3. Gradient elution

Similar calculations as described above were
performed for the gradient elution. Linear gradients
in accordance with Eq. (10a) were considered. For
the sake of simplicity the modifier was assumed to
be not retained, which is typical if the column is
initially equilibrated by the modifier, i.eH 4= O,
K.moa=0 were used for the simulations. The well-

known effect of gradient steepness on the chromato-

graphic band profiles is illustrated iRig. 8. The
gradient profiles of the modifier for two different

gradient steepnesses are superimposed to the band

profiles of the sample component. The process
parameters are summarizedTable 2.
In the simulations of gradient elution only chro-
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Fig. 8. Influence of gradient steepness on the chromatographic
profiles (calculations with the general rate model). Gradient
steepness: the change ©f,,,,=0.1t0C.,~0.6 in7 =12[-]
(gradient A) andC,,,,=0.1toC,~1.6 in7 = 6[—] (gradient

Fmod™
B). The parameters of Egs. (6) and (7) are;=1, m, =1,
Py =0.5, p,=2.

sion and mass transport coefficients also now depend
on the mobile phase composition. In gradient elution
modifier concentration changes are usually imposed
in order to create severe changes in the isotherm
slopes or chords. This leads to pronounced changes
in the values of the appropriate lumped transport
coefficients. Thus, the lumped coefficient determined
for initial (the start of gradient) and final (the end of
gradient) concentration levels can be markedly dif-
ferent. This “modifier” or “retention” dependence
can be much more pronounced compared to the
concentration dependence connected with the iso-
therm non-linearity discussed above. In systematic
calculations for the parameter used in this study the
values of the lumped Stanton number were found to
be more sensitive to the mobile phase composition
than those of the apparent Peclet number. Typical
S, and Pe_, numbers calculated for the initial and
final modifier concentration for two gradient steep-
nesses are summarizddeir.
The simulations of chromatographic profiles were
performed for both lumped models at:
(1) constant initial ast, fimadl Pe, numbers
related to the slope of the linear isotherm at initial or
final saturation level, respectively. For calculating
initial and fikklvalues the functional dependency

matographic peaks not reaching at the column outlet H(C,,.,) given by Eq. (6) was used.

the feed concentration were considered. As discussed
above under gradient conditions the lumped disper-

(2) local non-constant valis ahd Pe,
numbers corresponding to the local isotherm slope
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Table 2
Model parameters used in the gradient elution simulation study
Gradient steepness S s, pe? Pe’ eleN Modifier isotherm
Gradient A C...q change 1.0 4.7 82 101 50.5 H=0, K,,,q=0
0.1-0.6 (kmol/nd )
in 400 s
Gradient B C...q change 1.0 5.95 82 129 64 H=0, K,,,q=0

0.1-1.6 (kmol/ni )
in 200 s

®Calculated at the constant isotherm slope related to the in@jgl,&0.1) saturation level.
® Calculated at the constant isotherm slope related to the )al,€0.6 or 1.6, gradients A or B) saturation level.
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Fig. 9. Comparison between simulations with the general rate and
the transport-dispersive model in gradient elutiop=0.6, 7, =
0.3[—]. Gradient A. Solid line, the solution with the general rate
model; symbol 1, local values oft,, number related to local
isotherm parameters [Eqgs. (45) and (46)]; symbols 2 and 3, final
and initial constan®,, numbers Table 2,gradient A).
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Fig. 10. Comparison between simulations with the general rate
and transport-dispersive model in gradient elution. Gradient B
(Table 2,gradient B). Lines as itfrig. 9.

according to Egs. (45) and (46). The appropriate
actual isotherm parametetd(C, ) and K(C, .0
were determined from the relationship given by Eqgs.
(6) and (7).

4.3.1. Transport-dispersive model

In Figs. 9 and 10results of simulations for the
transport-dispersive model for two different gradient
steepnesses (gradients A and B Table 2 are
shown.

It is apparent that assumption of constant mass
transport coefficients leads to significant errors,
which become more pronounced for strong gradient
steepnesses. TI&  number depends strongly on the
local values of thek,, k, coefficients.& , increases
distinctly with increasing modifier concentration and
after achieving a maximum drops slowl¥ig. 13).
This phenomenon can be explained by the effect of
the variation of the Henry constanH] on the
coefficientsk,, k,. For higherH the contribution of
the term (1k,+1)* in Eq. (38) prevails andX,,
increases with decreasirtd. In the range of lowH
(H<1) its influence ork, vanishes while the term
kO/(1+k0)2 decreases continuously [compare Egs.
(38), (41) and (42)]. For illustration the values of the
S, calculated for the initial and final saturation level
related to the start and the end of the gradient
program are summarizebable 2.

4.3.2. Equilibrium-dispersive model

The same analysis was performed for the equilib-
rium-dispersive  model. In gradient elution the
equilibrium-dispersive model with constant axial
dispersion coefficient also gives better results com-
pared to those generated by the corresponding trans-
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Fig. 11. Comparison between simulations with the general rate
and the equilibrium-dispersive model in gradient elution. Gradient Fig. 13. Variation of the apparent Peclet number (corresponding to
A. Solid line, solution with the general rate model; symbol 1, local N°"s./,=Pe,/2), the lumped Stanton number and the retention
values ofPe, number [Eq. (46)]; symbols 2 and 3, final and initial ~ factor with the modifier concentration.

Pe, numbers Table 2,gradient A).

5. Conclusion
port-dispersive model. However, the influence of

retention dependence can be pronounced for strong
gradients, for which the sample components are
weakly retained or non-retained at the end of gra-

The influence of concentration and retention de-
pendences of apparent dispersion and mass transpor

dient (comparé-igs. 11 and 1P The variation ofPe,
is illustrated in Fig. 13. The values of thePe,

number related to the initial and final saturation level

are shown inTable 2.

It is evident (inFig. 13 that the influence of the
modifier concentration changes on the apparent
Peclet number is smaller than on the lumped Stanton
number. The former reaches an asymptotic value
whereas the latter varies in the whole range of

modifier concentrations or retention factors.
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Fig. 12. Comparison between simulations with the general rate
and the equilibrium-dispersive models in gradient elution. Gra-

dient B. Lines as irFig. 11.
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coefficients on the accuracy of band profile predic-
tion using the lumped equilibrium-dispersive and
transport-dispersive models has been discussed. The
simulations of both the models were compared
between each other and with the general rate model.
For isocratic elution the assumption of constant
lumped coefficients in the commonly used equilib-
rium and transport-dispersive models leads to inac-
curacies in the prediction of band broadening in low
efficiency systems. However, due to the typically
strong peak dilution in chromatographic processes,
enhanced by kinetic effects, the concentration depen-
dence of the lumped transport coefficients can be
often neglected. Both the lumped models studied can
be safely used in a broad range of column efficien-
cies. Errors in predictions using constant parameters
are most probable in simulating bands undergoing
severe concentration changes. Thus, errors can be
expected in particular in simulations of chromatog-
raphy processes where concentrating effects are
involved as in displacement chromatography. Due to
the character of the concentration dependencies the
lumped mass transport coefficient appears to be more
sensitive to concentration changes than the apparent
axial dispersion coefficient. Thus, the lumped
equilibrium-dispersive model with constant apparent
axial dispersion coefficient generated in our study
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more accurate results in simulating band profiles m

compared to the lumped transport-dispersive model.
For gradient elution an additional dependence of N
the lumped transport coefficients arises that usually

eff

cannot be neglected. Profiles, which are calculated N,

with constant lumped coefficients can be very inac-

curate, especially when the transport-dispersive

model is used. Hence, for moderate and low efficient N,

systems the “modifier” dependence of the lumped

coefficients should always be accounted for.

6. Nomenclature

a,

oo
oY

-no
s

(0]

I T
o

=
o

external surface of adsorbent pellet:
a, = for spherical particles (f/
m®) °

concentration in mobile phase
(kmol/m®)

concentration in the stagnant liquid
phase (kmol/m )

dimensionless concentration in mo-
bile phase

dimensionless concentration in the
stagnant liquid phase

equivalent particle diameter (m)
effective diffusion coefficient (th /
s)

axial diffusion coefficient (i /s)
=(1- g)/¢ phase ratio

= (1 - ‘ge) /ge

=(1-¢g)le,

Henry constant

retention factor of the component in
the column

retention factor of the component in

the particle

external mass transport coefficient
(m/s)

overall mass transport coefficient
(m/s)

lumped mass transport coefficient
(m/s)

equilibrium constant (h /kmol)
column length (m)

parameters in Eqgs. (5) and (6)
parameters in Eqgs. (5) and (6)

N

tdm

pKr
Pr
q

q?"

q;

Q*

\<><§C_Ur—+r—+;u—ﬁ

Greek letters

Eor Epy &

moment of the chromatographic
band profile
number of theoretical plates [Eq.
(20)]
number of theoretical plates corre-
sponding to the equilibrium-disper-
sive model
number of theoretical plates corre-
sponding to the general rate model
number of theoretical plates corre-
sponding to the transport-dispersive
model
parameters in Eqgs. (5) and (6)
parameters in Eqgs. (5) and (6)
adsorbed phase concentration
(kmol/kg)
stationary phase concentration in
equilibrium with the local stagnant
mobile liquid concentrations (kmol/
kg)
loading capacity (kmol/kg)
dimensionless adsorbed phase con-
centration
dimensionless adsorbed phase con-
centration in equilibrium with the
local stagnant liquid phase concen-
trations
radial coordinate (m)
dimensionless radial coordinate
time (s)
time of a rectangular pulse injection
superficial velocity (m/s)
= u/g, =interstitial velocity (m/s)
axial coordinate (m)
dimensionless concentration in mo-
bile phase
dimensionless concentration  or
average dimensionless concentra-
tion in the stagnant mobile phase
dimensionless axial coordinate

external, internal and total void
fractions

absolute error

central error

solid mass density (kg/f )
variance (second central moment)
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T dimensionless time

T, dimensionless time of rectangular
pulse injection

Subscripts

F feed mod= modifier

Criterial numbers

Bi Biot number k., d /2D

ext

Pe Peclet numberuL/D, &,

Pe, apparent Peclet number

S Stanton numberk,,.a L e/u

S, lumped Stanton numbek, a Le/u
S, overall Stanton numbek,, a Le./u
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